
Towards an open source
tool stack for e-commerce

search
MICES 2020

Eric Pugh, Johannes Peter, Paul M. Bartusch, René Kriegler

Who we are
Combined 45 years of
experience in search

Open Source enthusiasts

ASF member, Committers on:
Solr, Querqy, SMUI, Quepid,
Contributions: RRE, NiFi

 @pbartusch @renekrie @dep4b

In this session...

You will meet Pete - ‘Product Owner E-commerce Search’ (and see Pete struggle
through a search project)

Learn about open source components that help speed up search development
and search quality work (and make Pete’s life easier)

Learn and discuss about Chorus and Querqy.org - our project to kick-start
e-commerce search with open source (and to let Pete do the ‘really cool stuff’)

Pete got hired as the Product Owner for search:

❝ Make our search better!

❝ Build me a best-in-class search!
🤨 🙂

Great challenge! Thanks! ❝

Pete establishes his perspective on the business
challenges with search in his company:

❝ We are dealing with a lot of complaints about our search!

❝ Search might be tricky for our type of products and given our

target customers, but if we got it right, we would definitely sell more
and have a great advantage over our competitors!

❝ We want to go far beyond text matching with our innovations!

❝ Our managed search solution is too expensive and doesn’t offer

enough flexibility! We want to improve on our search!

��

Pete thinks about his approach:

😫

❝ If we decide, to use a closed source, commercial solution

❝ … we might end up with too little flexibility!

❝ … we will have a hard time to implement our great ideas! Will we ever

achieve that competitive advantage?

❝ … we would not own our search!

😓

❝ If we decide, to build our search from scratch, using open source, we

need to plan many epics to get on par with commercial solutions before we
can beat the market!

��⭐��🏿 ♂
● Operations-ready Solr (or ES) setup with indexed products

● Search expert configuration (top-N searches)

● Search result page (collapsing)

● Filters

● Autocomplete

● Improve on recall and zero results (e.g. synonyms, misspellings, content redirects)

● Finetune search results (e.g. boost & penalise)

● Optimised configuration (parameter optimisation)

● …

● Learning-To-Rank, domain specific ranking & queries, personalisation, search/query

recommendations, …

● Innovative and new search products and features

● Operations-ready Solr (or ES) setup with indexed products

● Search expert configuration (top-N searches)

● Search result page (collapsing)

● Filters

● Autocomplete

● Improve on recall and zero results (e.g. synonyms, misspellings, content redirects)

● Finetune search results (e.g. boost & penalise)

● Optimised configuration (parameter optimisation)

● …

● Learning-To-Rank, domain specific ranking & queries, personalisation, search/query

recommendations, …

● Innovative and new search products and features What Pete needs
To do first

🤔

❝ If we decide, to build our search from scratch, using open source, we

need to plan many epics to get on par with commercial solutions before we
can beat the market!

● Operations-ready Solr (or ES) setup with indexed products

● Search expert configuration (top-N searches)

● Search result page (collapsing)

● Filters

● Autocomplete

● Improve on recall and zero results (e.g. synonyms, misspellings, content redirects)

● Finetune search results (e.g. boost & penalise)

● Optimised configuration (parameter optimisation)

● …

● Learning-To-Rank, domain specific ranking & queries, personalisation, search/query

recommendations, …

● Innovative and new search products and features

❝ Can we speed this up?

��⭐��🏿 ♂

The hot stuff

Pete knows:

❝ Search Quality correlates with money earned
at the Chorus Electronics online store!🤑

❝ Open Source Software
Components!

We got something for you, Pete!

SMUI

Quepid

List of OSS
Components

RRE

Querqy

Blacklight

Demo: Assessing Quality in the
“Chorus Electronics Store”

❝ OSS Components!

❝ More than 65% of our

searches traffic will be optimised
by rules!

Pete knows, how important active search
management is:

��

Example based on ca. 6 million searches on a platform of a European e-commerce retailer.

search method vs searches (Google Analytics)

Demo: Querqy + SMUI

❝ OSS Components!

Demo: Measuring search relevance with
RRE and Quepid

❝ OSS Components!

Break

... Querqy for queries

❝ OSS Components!

The Querqy library

Library and framework for

● query rewriting
● optimised query building with many parameters to tune search relevance

Plugins available for Solr (2014) and Elasticsearch (2019)

Apache 2 License

github.com/querqy & querqy.org

The Querqy library and SMUI

Developed with e-commerce search in mind*- users & contributors include:

* ... but works well in other domains too

… and others ...

Why would we rewrite a query?

Word-level symbols and semantics

Interprete query intent

Seller interests

Synonyms

Word breaks

Orthographic normalisation

Interpret semantic relations Dutch:

‘voer voor honden’ (‘food for dogs’) = ‘hondenvoer’
(dog food); interpret ‘without’

Recognise entities / match with
fields

Word-level symbols and semantics

Interprete query intent

Seller interests

Boost ‘laptop’ => Bring laptop computers to the

top

Penalise ‘laptop’ => Push ‘sleeve’ to the end of

the result list. Make sure tablets are not at the top.

Filter ‘mouse’ => only show computer accessories

Word-level symbols and semantics

Interprete query intent

Seller interests

Cost/profit optimisation

Brand reputation ‘t-shirt’ => don’t show

basic t-shirts at the top, we are a t-shirt design trend
setter!

Word-level symbols and semantics

Interprete query intent

Seller interests

Querqy under the hood

Parser

Querqy
Query“user input”

<<parses>> <<creates>>

Rewriter

<<rewrites>>

RewriterRewriter

Lucene
Query

Lucene Query
Builder

<<uses>> <<creates>>

Rewrite
Chain

Search engine /
request adapter

Lucene / request
adapter

ES / Solr Dismax
request adapter

Controller

QueryBuilder (ES)
QParser (Solr)

<<supplies to ES/Solr>>

<<supplies>>

<<creates>>

Lucene Elasticsearch / SolrQuerqy Core

... more query rewriting with Querqy

❝ OSS Components!

Rewriters in Action

Rewriters that come with Querqy
● Common Rules Rewriter

● Replace Rewriter

● Number-Unit Rewriter

● Shingle Rewriter

● Word Break Rewriter

● Write your own - it’s a framework!

mobile => (mobile OR smartphone)

ombile => mobile

laptop 15” => laptop AND screen_size:[13.5 TO 16.5]

i phone => (i phone OR iphone)

grainfree => (grainfree OR grain free)

voer voor honden => (voer voor honden OR hondenvoer)

Common Rules Rewriter - Advanced Usage

● RawQuery: Opening the endless world of combined Querqy-Lucene power

new =>

 DELETE: new

 UP(1.0): * release_date:[NOW/DAY-4DAYS TO NOW/DAY+1DAY]

special offer =>

 DELETE: special offer

 FILTER: * strike_price:[* TO *]

 UP(1.0): * {!func}if(gte(rint(mul(div(sub(strike_price,price),strike_price),100)),20),20,0)

Replace Rewriter - Simple Rules
● Handling term variations (spellings, plural, …)

newer; newest; new offers => new

cheapest smartphones => cheap smartphone

/ =>

+ => plus

● Common Rules Rewriter (subsequently applied)

new =>

 DELETE: new

 UP(1.0): * release_date: …

Replace Rewriter - Wildcard Rules

● Handling prefixes and suffixes more generic

new* => new # newer; newest; ... => new

msart* => smart$1 # msartphone => smartphone

computer* => computer $1 # computerdesk => computer desk

*phones => $1phone # smartphones => smartphone

*+ => $1 plus # s8+ => s8 plus

*) => $1

(* => $1 # (2018) => 2018

Number-Unit Rewriter

● Rewriting number-unit combinations to filter and boost queries

notebook 16 inch => notebook AND screen_size:[14.5 TO 17.5]

16

screen size

boost score

14.5 17.5

Reducing query building complexity with Querqy

Querqy for query building

query=samsung notebooks

What Elasticsearch should produce:

AND(

OR(

brand:samsung,

product_type:samsung

),

OR(

brand:notebooks,

product_type:notebooks

)

)

Querqy for query building - Elasticsearch

query=samsung notebooks

What Elasticsearch should produce:

AND(

OR(brand:samsung,

product_type:samsung

),

OR(brand:notebooks,

product_type:notebook

)

)

What

"multi_match": {

"type": "cross_fields",

"query": "samsung notebooks",

"fields": ["brand", "product_type"]

}

creates:

OR(

AND(brand:samsung,

brand:notebooks),

AND(product_type:samsung,

product_type:notebook)

)

Querqy for query building - Elasticsearch

query=samsung notebooks

What Elasticsearch should do:

AND(

OR(brand:samsung,

product_type:samsung

),

OR(brand:notebooks,

product_type:notebook

)

)

What Elasticsearch users do:

"bool": {

"must": [

"multi_match": {

"type": "cross_fields",

"query": "samsung",

"fields": ["brand",

"product_type"]},

"multi_match": {

"type": "cross_fields",

"query": "notebooks",

"fields": ["brand",

"product_type"]}

]}

Querqy for query building - Elasticsearch

query=samsung notebooks

What Querqy does:

AND(

OR(brand:samsung,

product_type:samsung

),

OR(brand:notebooks,

product_type:notebook

)

)

Using the querqy query builder for ES:

"querqy": {

"matching_query": {

"query": "samsung notebook"

 },

"query_fields": ["brand",

"product_type"],

 "rewriters": [...]

}

Reducing query building complexity with Querqy

Query rewriting: synonyms

TQ(*:personal) TQ(*:computer)

DMQ DMQ

BQ

TQ(*:personal) TQ(*:computer)

DMQ DMQ

BQ

TQ(*:pc) TQ(*:pc)

personal computer =>
 SYNONYM: pc

Preserves ‘minimum should match’ / boolean semantics
Works well even for multiple multi-term term synonym input/output
Applied before expanding to fields and before Lucene Analysis chain

BQ: Boolean Query, DMQ: DisMax Query, TQ: Term Query

Lucene Query building: document frequency

Scoring based on tf*idf vs. fields is a problem
 ... and e-commerce search makes extensive use of fields!

lucene.TermQuery
(title:jeans, df=501)

lucene.DisMaxQuery

lucene.TermQuery
(brand:jeans, df=3)

lucene.TermQuery
(color:jeans, df=1)

score ~ (term frequency * inverse document frequency * ...)

argh!

Color: Jeans

query=jeans

Lucene Query building: document frequency in Querqy

Use the max. Document Frequency for all terms a top-level query term is expanded to
Similar to BlendedTermQuery / SynonymQuery in Lucene

lucene.TermQuery
(title:jeans, df=501

=> df=501)

lucene.DisMaxQuery

lucene.TermQuery
(brand:jeans, df=3

=> df=501)

lucene.TermQuery
(color:jeans, df=1

=> df = 501)

Lucene Query building: document frequency in Querqy

Also works for complex query expansions (unlike BlendedTermQuery / SynonymQuery in Lucene)
Enabled by default. Configurable alternatives: standard Lucene scoring, or turn off TF*IDF altogether

lucene.TermQuery
(title:jeans, df=501

=> df=501)

lucene.DisMaxQuery

lucene.TermQuery
(brand:jeans, df=3

=> df=501)

lucene.TermQuery
(color:jeans, df=1

=> df = 501)

lucene.BooleanQuery

lucene.DisMaxQuery lucene.DisMaxQuery

lucene.TermQuery
(title:denim, df=12

=> df=501)

lucene.TermQuery
(title:trousers, df=50

=> df=501)

- putting the components
together

Making Pete’s life easier:

🥳

❝ All these tools - I wish I had known them in the first place!

And how will they work together? Who else uses them?

Why a tool stack for e-commerce search?

Strong demand for onsite $€ARCH optimisation

- Needs tools to measure quality
- Sophisticated search management requirements
- Reduce ramp-up time and start optimising for your business earlier

Reduce the gap: open source search engines not built for e-commerce

- Ranking models made for text documents vs highly structured data (fields!) in
e-commerce

- How do we deal with variants of a product? (matching, ranking, facets)

: Open source stack for e-commerce search

- Reduce time to get on par with commercial search engines
- package as integrated toolset for Elasticsearch and Solr (Chorus bootstrap application)

- Supply solutions for typical e-commerce search:
- Tools to support merchandiser/search manager (SMUI/Querqy)
- Easy and extendible query building and rewriting (Querqy)
- Manual judgment collection (Quepid)
- Automated search relevance testing (RRE)
- Parameter/configuration optimisation (??, maybe RRE or Quaerite)
- Simple search UI (Blacklight)

Vision

Making Pete’s life easier:

🥳

❝ All these tools - I wish I had known them in the first place!

And how will they work together? Who else uses them?

❝ Now we can beat our competitors:

Chorus
Integrated open source stack to bootstrap
e-commerce search

Querqy.org
Umbrella project

… What’s next

Querqy.org - What’s next?
Establish a community process

Elasticsearch versions of SMUI and Chorus

Validate Chorus work smoothly for many different organizations

Show a path from bootstrapping with Chorus to production

Integrate your ideas and tools in the Chorus Stack!

Get in touch

hellopete@querqy.org

https://querqy.org

https://github.com/querqy

https://ecom-search.slack.com

😁

https://querqy.org
https://github.com/querqy
https://ecom-search.slack.com

